本站资源全部免费,回复即可查看下载地址!
您需要 登录 才可以下载或查看,没有帐号?立即注册
x
课程介绍:
Transformer在许多NLP(自然语言处理)任务中取得了最先进的成果。 ViT (Vision Transformer)是Transformer应用于CV(计算机视觉)领域里程碑式的工作,后面发展出更多的变体,如Swin Transformer。
ViT (Vision Transformer)模型发表于论文An Image is Worth 16X16 Words: Transformer For Image Recognition At Scale,使用纯Transformer进行图像分类。ViT在JFT-300M数据集上预训练后,可超过卷积神经网络ResNet的性能,并且所用的训练计算资源可更少。
本课程对ViT的原理与PyTorch实现代码进行精讲,来帮助大家掌握其详细原理和具体实现。其中代码实现包含两种代码实现方式,一种是采用timm库,另一种是采用einops/einsum。
原理精讲部分包括:Transformer的架构概述、Transformer的Encoder 、Transformer的Decoder、ViT架构概述、ViT模型详解、ViT性能及分析。
代码精讲部分使用Jupyter Notebook对ViT的PyTorch代码进行逐行解读,包括:安装PyTorch、ViT的timm库实现代码解读、 einops/einsum 、ViT的einops/einsum实现代码解读。
课程目录:
├──01 课程介绍
└──01 课程介绍.mp4 35.67M
├──02 ViT原理精讲
├──01 Transformer架构概述.mp4 34.81M
├──02 Transformer的Encoder.mp4 92.94M
├──03 Transformer的Decoder.mp4 31.03M
├──04 ViT架构概述.mp4 28.26M
├──05 ViT模型详解.mp4 31.85M
└──06 ViT性能及分析.mp4 52.39M
└──03 ViT代码精讲(PyTorch)
├──01 安装pytorch.mp4 14.73M
├──02 ViT的timm库实现代码精讲.mp4 113.51M
├──03 einops和einsum.mp4 52.90M
└──04 ViT的einopseinsum代码实现精讲.mp4 100.59M
下载地址:
|
温馨提示:
1、本站所有内容均为互联网收集或网友分享或网络购买,本站不破解、不翻录任何视频!
2、如本帖侵犯到任何版权问题,请立即告知本站,本站将及时予与删除并致以最深的歉意!
3、本站资源仅供本站会员学习参考,不得传播及用于其他用途,学习完后请在24小时内自行删除.
4、本站资源质量虽均经精心审查,但也难保万无一失,若发现资源有问题影响学习请一定及时点此进行问题反馈,我们会第一时间改正!
5、若发现链接失效了请联系管理员,管理员会在2小时内修复
6、如果有任何疑问,请加客服QQ:1300822626 2小时内回复你!